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J. Phys. A: Math. Gen. 17 (1984) L463-L467. Printed in Great Britain 

LETTER TO THE EDITOR 

An exact formula for the number of spiral self-avoiding walks 

G S Joyce 
Physics Department, King's College, Strand, London WCZR ZLS, UK 

Received 5 April 1984 

Abstract. An exact closed-form expression is obtained for the number s,, of spiral self- 
avoiding walks with n steps on the square lattice. This result is used to derive a complete 
asymptotic expansion for s, which is valid as n -*CO. 

Recently several authors (Blote and Hilhorst 1984, Whittington 1984, Klein et a1 1984, 
Redner and de Arcangelis 1984) have investigated the properties of a spiral self-avoiding 
walk model on the square lattice which was first introduced by Privman (1983). A 
spiral walk is a self-avoiding walk with the additional constraint that the walk is not 
allowed to make a 90" right-hand turn. (Note that the first step of each walk is assumed 
to have a j x e d  direction.) Blote and Hilhorst (1984) have obtained the exact generating 
function for the number s, of spiral self-avoiding walks with n steps. This generating 
function was used to show that to leading-order the asymptotic behaviour of s, is 

e x p ( 2 ~ n  1/2/31/2), (1) sn -2-23-5/4Tn-7/4 

as n + m .  

generating function 
In this letter we shall express the generating function for s, in terms of the standard 

where p(n) is the number of unrestricted partitions of n (see Andrews 1976, p 71). An 
exact closed-form expression for s, is then derived by applying the methods of Hardy 
and Ramanujan (1918), and Rademacher (1937) to the generating function. This new 
result is used to establish a complete asymptotic expansion for s, with formula (1) as 
the leading-order term. 

We begin by considering the related generating function 

a 
S*(x)= c s;xn, 

n = l  
(3) 

where S X  is the number of n-step self-avoiding walks which only spiral outward. Blote 
and Hilhorst (1984) have shown that 
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where go(x) = 1, and 

A straightforward rearrangement of equation (4) enables one to write S*(x) in the 
alternative form 

The application of an identity due to Cauchy (see Andrews 1976, p 20) to equation 
(6) gives the first simplified formula 

x a o  
1 - x  n = I  

S*(x)=- J-J (l-Xfl)-l. 

It follows from equations (2), (3) and (7) that 
f l - l  

s:= c p ( k ) ,  (n a 1). 
k = O  

(7) 

This formula can be used to calculate the values of S X  since the partition function p ( k )  
has been tabulated for ks 1000 by Gupta et a1 (1962). The asymptotic behaviour of 
s a  to leading-order is readily determined by applying a general theorem to the infinite 
product (7), (see Andrews 1976, p 89). We find that the final result agrees with that 
given by Blote and Hilhorst (1984). 

Next we use the basic formula (7) to simplify the exact expression derived by Blote 
and Hilhorst (1984) for the generating function 

CE 

S(X) = SflXfl, (9) 
n = l  

where s, is the total number of n-step spiral walks. In this manner we obtain 
cc 00 

x2s(x)=-(1-x+x2)-(1-x)(1-2x) n (1-xn)-2+2(1-x)* n (l-xn)? (10) 
n = i  n = l  

If we substitute equations (2), (9) and the generating function 

[P(X)l2 = fl (1  -Xfl)-2 = c p2(n)x" 
n = I  n =o 

in equation (10) we obtain the relation 

Sn=-2p2(n)+3p2(n +1)-p2(n +2)+2p(n)-4p(n +1)+2p(n+2),  (12) 

where n 3 1. This result and the table of partitions (Gupta et a1 1962) enables one to 
write down the numerical values of s, for all n S 198. For example, 

~ 6 5  = -5506 157 680 + 10 145 067 47 1 - 4147 937 540 

+4025116-9294080+5359375 

= 491 062 665. 

This result agrees with the value given by Redner and de Arcangelis (1984). In a 
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similar manner we find 

sIoo=278712975941. (13) 
From the classic work of Hardy and Ramanujan (1918), and Rademacher (1937) 

it is known that p ( n )  can be written as 

where 

is a modified Bessel function of order i. The coefficients Ak(n)  in the series (14) are 
given by 

with A, (n )=  1, where s(h,  k) is the Dedekind sum 

and [ X I  denotes the greatest integer which is less than or equal to x.  The prime in 
equation (16) indicates that the integers h and k must be coprime. 

It should be stressed that equation (14) provides one with an absolutely convergent 
series which can be used to calculate the exact numerical value of p ( n ) .  In practice 
we define T K ( n )  to be the sum of the truncated series (14) with k = 1 to K, and then 
determine a rigorous upper bound eK (n) for the absolute value of the error p ( n )  - TK (n). 
(Rademacher (1937) has derived various suitable formulae for e K ( n ) . )  The values of 
T K ( n )  are now found for increasing values of K = 1,2, .  . . , M until there is just one 
integer J in the interval [T,(n)-e,(n), T , ( n ) + e M ( n ) ] .  It is clear that the integer J 
will give the exact value ofp(n). This procedure is illustrated in table 1 for the particular 
case p (  100). 

Fortunately, we can also use the Hardy-Ramanujan-Rademacher method to estab- 
lish an exact convergent series for the coefficient p 2 ( n )  in the generating function (1 1). 
The final formula is 

where 

Bk(n)= 2‘ CoS[2~s(h, k ) - (2~nh/k) ] ,  (k’ 1) (19) 
O < h < k  

with B , ( n )  = 1 and n 3 1. In equation (19) s(h,  k) is a Dedekind sum, and the prime 
indicates that the integers h and k are coprime. If the basic formulae (14) and (18) 
are substituted in equation (12) we obtain an exact closed-form expression for the 
number of spiral walks s,. The numerical values of p 2 ( n )  have been determined by 
applying the error bound method to the truncated series (18). In table 1 we list the 
numerical results for the particular case ~ ~ ( 1 0 0 ) .  The closed-form expression for s, 
has also been evaluated for n d 150. Agreement was found with all the available data 
for s, (Privman 1983, Blote and Hilhorst 1984, Redner and de Arcangelis 1984). 
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Table 1. Evaluation of ~(100)  and p2(100) using the closed-form expressions (14) and (18) 
respectively. 

K 

190 568 944.783 
190 569 293.655 
190 569 291.057 
I90 569 29 1 .I42 
190 569 292.060 
I90 569 29 I .996 
190 569 292.014 

2.2 x 10' 
2.9 x 10' 
1.0 x 10 
2.48 
I .20 
0.784 
0.592 

T K  ( 100) for p2( 100) 

1843 645 804 262.089 
I843 645 820 774.418 
1843 645 820 763.904 
1843 645 820765.61 I 
1843 64s 820 766.045 
I843 645 820 765.980 
1843 645 820 766.005 

- 
6.6 X IO4 
2.7 x IO2  
1 . 9 ~ 1 0  
4.15 
1.53 
0.767 

p(100)= 190569292 p2(  100) = I843 645 820 766. 

A sequence of asymptotic representations for p (  n )  and p2( n) can be simply obtained 
by forming successive truncations of the series (14) and (1 8) respectively. To leading- 
order we have 

and 

as n + co. The relative errors in these asymptotic representations decrease exponentially 
fast as n + 00. From these asymptotic results and equation (12) we find that the dominant 
asymptotic representation for sn is 

as n + q  where 

z = 2 ~ ( n / 3 ) ' / ~ ,  (23)  

&m,n = ( m  -&>In, (24)  

and a, = -2 ,  a ,  = 3, a2 = - 1. The relative error in the formula (22)  is of O(exp(-Anl'2)), 
with A = n ( d 2  - 1 ) ( $ ) ' I 2 .  For the particular case n = 100, the dominant representation 
(22)  gives sl,,-2.787 07 x 10" which is in good agreement with the exact value (13). 

In order to establish a link with the asymptotic analysis of Blote and Hilhorst 
(1984) we now apply the Lommel expansion (Watson 1944) - (&Z/2)I 

I [z( 1 + &)I/2] = 
(1  + & y / 2  " I = O  I! - L + l ( Z ) ,  

1 

with v = 2 to equation (22) .  Hence we obtain 

as n + co, where z is defined in equation (23) .  Next we substitute the standard asymptotic 
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expansion 
00 

I,(z) - ( ~ T z ) - ' / ~  e' 1 (-1lr(v, r ~ z ) - ~  
r = O  

in equation (26), where 

L467 

(27) 

( r 2  1) (28) 
1 

2 ' r !  
(v, r ) = 7 ( 4 v 2 -  1 ) ( 4 ~ ~ - 3 ~ ) .  . . [4v2-(2r- l)'], 

with (v, 0) = 1. A rearrangement of the resulting double series yields the basic asymptotic 
expansion 

W 

(29) 
V m  s, -2-23-5/47rn-7/4 e~p(27rn"~/3 ' /~ )  C m/2, 

m = o  n 
as n + 00, where 

The values of the first few coefficients U, are 

uo= 1 ,  

U - -=(45 +47r2) = -2.264 081 5879, 
144T 1 -  

1 
138 24p2 U' = (76 545 +3  1 7 5 2 ~ ~  - 3 6 3 2 ~ ~ )  0.264 845 6899. 

The leading-order term in the expansion (29) for s, is in agreement with the 
asymptotic analysis of Blote and Hilhorst (1984). However, these authors comment 
on the fact that their asymptotic formula (1) does not provide an accurate approximation 
for the coefficients s, when n G 50. In fact when n = 100 the formula (1) gives sIm= 
3.574 X IO" which does not agree well with the exact value (13). This poor agreement 
is largely due to the first correction term u l / n l / 2  in the expansion (29). 

I am grateful to Dr D S Gaunt for several useful discussions and for reading through 
the first version of this letter. 

Note added in proof: In a very recent letter Guttmann and Wormald (1984) have independently derived the 
Blote-HilJorst asymptotic formula (1) for s,, and have also shown that the relative error in equation (1) is 
of O( I /Jn ) .  However, their numerical estimate for the correction coefficient U, = -0.7 is in serious disagree- 
ment with the exact value (3 1). 
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